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We present an acoustic model of the Greenspan acoustic viscometer, a practical instrument for
accurately measuring the viscosity η of gases. As conceived by Greenspan, the viscometer is a
Helmholtz resonator composed of two chambers coupled by a duct of radius rd. In the lowest order,
η = πfρ(rd/Q)2, where f and Q are the frequency and quality factor of the isolated Greenspan
mode, and ρ is the gas density. Thus the viscosity can be determined without calibration by
measuring the duct radius and frequency response of the resonator. In the full acoustic model of the
resonator, the duct is represented by a T-equivalent circuit, the chambers as lumped impedances,
and the effects of the diverging fields at the duct ends by lumped end impedances with inertial
and resistive components. The model accounts for contributions to 1/Q from thermal dissipation
(primarily localized in the chambers) and from a judiciously-located capillary used for filling and
evacuating the resonator. A robust, prototype instrument is being used for measuring the viscosity
of reactive gases used in semiconductor processing. For well-characterized surrogate gases, the
prototype viscometer generated values of η that were within ±0.8% of published reference values
throughout the pressure range 0.2–3.2 MPa.

I. INTRODUCTION

As conceived by Greenspan,1 the acoustic viscometer is
a Helmholtz resonator composed of two gas-filled cham-
bers connected by a duct of radius rd. (See Fig 1.) By
design, the radius of the duct is much smaller than its
length Ld and smaller than the dimensions of the cham-
bers (radius rc, length Lc). Such a resonator has a low
frequency (Greenspan) mode in which the gas oscillates
between the chambers through the duct. It is easy to
measure the frequency response of the Greenspan mode
very accurately because it is well below the frequencies
of all other acoustic modes of the enclosed gas and the
elastic modes of the resonator body. The damping of the
Greenspan mode is determined primarily by the viscos-
ity of the gas η; in the lowest order, η = πfρ(rd/Q)2,
where f and Q are the frequency and quality factor of
the mode and ρ is the gas density. The objective of this
paper is to calculate an accurate response function so
that the Greenspan viscometer can be used to determine
accurately the viscosity of gases.

Ultimately, we are concerned with the viscosity of the
highly reactive gases used in semiconductor processing.
The data are needed to calibrate mass-flow controllers
and to model processes such as chemical vapor deposi-
tion. Also, the viscosity of helium-argon and helium-
xenon mixtures is needed to optimize thermoacoustic ma-
chinery. Below, we provide test results from a prototype
Greenspan viscometer using five well-studied surrogate
gases over the pressure range 0.2–3.2 MPa. The result-
ing values of η were within ±0.8% of published reference
values.

Figure 1 shows the Greenspan viscometer described
by Wilhelm et al.

2–4 (An earlier version of the viscome-
ter and additional experimental detail appear in Ref 5.)
Two right-circular cylindrical chambers coupled by a
concentric cylindrical duct form a resonator whose low-
frequency mode consists of oscillatory gas flow between
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FIG. 1: Cross section of a Greenspan viscometer. The dot-
ted line AA′ indicates the axis of circular symmetry for all
parts except the fill capillary. Two cylindrical chambers fit-
ted with source (S) and detector (D) transducers are coupled
by a concentric cylindrical duct. The dimensions in millime-
ters are Ld = 31.17, rd = 2.316, r′d = 3.21, rc = 21.02,
Lc = 21.04, and Li = 10.5. The fill capillary has an inner ra-
dius rf = 0.10 mm (not to scale) and a length Lf = 800 mm.
As shown, it is attached at the center of the duct.

the chambers (assumed to be of equal volume). The
“mass element” of the resonator is the cylindrical mass
of gas in the duct and near the duct ends. It has a nearly
uniform flow velocity and effective mass Ad(Ld + 2δi)ρ,
where ρ is the gas density, Ad = πr2

d is the cross-sectional
area of the duct, Ld is the duct length, and the length
δi ≈ 0.655 ·rd is an inertial end correction which accounts
for diverging flow at the duct ends. Flow into a cham-
ber increases the pressure in that chamber and provides
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a restoring force; the effective force constant is ρc2A2
d/Vc

per chamber, where c is the speed of sound and Vc is the
volume of a single chamber. A zero-order estimate of the
frequency ω0 = ck0 is

k2
0 =

2Ad

Vc(Ld + 2δi)
. (1)

(If the chambers have unequal volumes V1 and V2, 2/Vc

should be replaced by 1/V1 +1/V2.) For the resonator in
Fig 1, Eq (1) has a numerical value k0 ≈ 5.8 m−1. The
corresponding frequency is a few hundred Hz for typical
gases, well below the frequencies of elastic vibrations of
the resonator body and higher acoustic modes of the gas
in the resonator. Thus, the Helmholtz mode is isolated
and non-degenerate, which is desirable if η is to be de-
termined with the highest accuracy from measurements
of the mode’s resonance profile.

In addition, the low frequency of the Greenspan mode
means that the corresponding wavelength is much larger
than the viscous and thermal penetration lengths δv and
δt. In this limit the equations for dissipative acoustic flow
in a duct have a relatively simple form. Also, the lengths
δv and δt are much larger than the mean free path in the
gas, so inertial and thermal accommodation effects in the
boundary conditions can be neglected.

In the remainder of this section, we describe the prin-
ciple of the measurement by considering the viscous and
other contributions to the inverse quality factor (1/Q)
of the resonator. In section II, we develop a full acoustic
model to predict the frequency response of the resonator,
from which the viscosity is deduced.

Acoustic energy dissipation in the gas is a result of both
surface phenomena (energy transport near the resonator
wall) and volume phenomena (energy transport far from
the wall). At low frequencies and at pressures in the
range 0.1 MPa to 3 MPa, the main sources of dissipation
for non-relaxing gases are viscous and thermal boundary
layer phenomena, which can be estimated using the for-
mulae derived by Morse and Ingard for flat surfaces.6 The
rate of energy loss within the viscous boundary layers in
the duct is

Ėv = −1

2
ρωδvu

2
d · 2πrd(Ld + 2εrrd). (2)

Here δv =
√

2Dv/ω, where Dv = η/ρ is the viscous dif-
fusivity, ud is the rms value of the gas velocity in the
duct and εrrd is an effective length associated with vis-
cous dissipation at the duct ends. The rate of energy loss
within the thermal boundary layer in the chambers is

Ėt = − (γ − 1)ωδt

2ρc2
p2

ch · 2Sc, (3)

where γ = Cp/Cv is the ratio of the specific heat per unit
mass at constant pressure to the specific heat per unit
mass at constant volume, δt =

√

2Dt/ω is the thermal
penetration length (Dt is the thermal diffusivity), pch is
the rms pressure amplitude in the chambers and Sc is the

total surface area within one chamber. The total acoustic
energy in the resonator is

E ≈ ρu2
d · Ad(Ld + 2δi) ≈

p2
ch

ρc2
· 2Vc. (4)

Acoustic dissipation within the resonator volume is
important for gases at very low density, gases near the
liquid-vapor critical point, and relaxing gases under a
wide range of conditions. The fractional rate of energy
loss due to these processes is

Ėvolume

E
= −ω2

c2

[

4

3
Dv + (γ − 1)Dt +

ηb

ρ

]

. (5)

The first two terms in Eq (5) are the classical absorption
terms. The third term describes absorption due to relax-
ation processes and is characterized by the bulk viscos-
ity ηb. Relaxation processes govern the energy exchange
between translational degrees of freedom (the acoustic
mode) and other internal modes of the fluid, such as
molecular vibrations, metastable intermolecular bound
states, or critical fluctuations. If the process can be char-
acterized by a single relaxation time τrelax, then the bulk
viscosity is approximately

ηb = (γ − 1)ρc2 Crelax

Cp

τrelax

1 + (ωτrelax)2
. (6)

The inverse resonance quality factor 1/Q = −Ė/(ωE)
is the sum of three terms:7

1

Q
=

1

Qv
+

1

Qt
+

1

Qvolume

(7)

1

Qv
=

δv

rd
· Ld + 2εrrd

Ld + 2δi
(8)

1

Qt
=

(γ − 1)δtSc

2Vc
(9)

1

Qvolume

=
ω2

2c2

[

4

3
δ2
v + (γ − 1)δ2

t +
2ηb

ρω

]

. (10)

If end effects are neglected, 1/Qv is simply δv/rd. For
the resonator in Fig 1, the numerical value of εr is ap-
proximately 0.95 under typical experimental conditions,
so the dissipative end effect acts to increase the viscous
dissipation by an amount 2εrrd/Ld ≈ 0.14. The inertial
end effect acts to increase the kinetic energy and hence
decreases 1/Qv by an amount 2δi/Ld ≈ 0.097. Together,
the inertial and dissipative end effects in the resonator
contribute a net increase in 1/Qv by a factor of 1.04.

Equation (7) shows that when thermal boundary layer
and bulk absorption can be neglected, the viscosity can
be determined as

η =
1

2
ωρδ2

v =
πfρr2

d

Q2

(

Ld + 2δi

Ld + 2εrrd

)2

(11)

provided that the end corrections are known. The only
requirements to measure f and Q are transducers that
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(1) have a smooth frequency response (no sharp peaks)
in the vicinity of the Helmholtz mode and (2) are sta-
ble during the few minutes required to measure the fre-
quency response of the Helmholtz mode. The quality
factor should be small enough so that 1/Q can be mea-
sured accurately but not so small that signal/noise is se-
riously degraded. In practice, these considerations lead
to designs that work in the range 20 < Q < 100.

For chambers with equal radii and lengths (rc = Lc),
the ratio Vc/Sc in Eq (7) is rc/4. Because the penetra-
tion lengths δv and δt in gases are typically of the same
magnitude, the desired dominance of the viscous term in
Eq (7) requires rd � 1

2
rc/(γ − 1). An attempt to satisfy

this criterion drives the design toward cumbersome large
chambers, low frequencies, and low Qs, where measure-
ments become difficult. Thus, for the practical, compact
acoustic viscometer shown in Fig 1, the thermal diffusiv-
ity contribution to Eq (11) must be estimated. At 300 K
and 0.2 MPa the thermal term is 18% of the viscous term
for argon and 4% for propane. Also, the advantages of a
reasonably compact resonator require a duct of moderate
length, so that end corrections are not negligible, so it is
necessary to determine the parameter εr either through
calculation or experiment.

II. ACOUSTIC MODEL OF THE RESONATOR

A. Acoustic propagation in a circular duct

Acoustic waves in gas-filled ducts are governed by the
equations first proposed by Kirchhoff,8 whose classic pa-
per includes a description of the effects of the coupled
acoustic, thermal, and vorticity waves in ducts of circular
cross section. The low-frequency limit of his solutions, in
a form appropriate for this paper, is generally attributed
to Crandall.9 We assume an implicit time dependence of
all “small” acoustic quantities proportional to eiωt in the
following. The acoustic pressure and volume velocity U
are related by the transmission line equations

∂p

∂z
= −ZU,

∂U

∂z
= −Yp, (12)

where Z is the series impedance and Y is the parallel ad-
mittance. For a circular duct in the low-frequency limit,
these quantities are

Z =
iωρ

Ad

1

1 − Fv
, Y =

iωAd

ρc2
[1 + (γ − 1)Ft], (13)

where Fv and Ft are defined by

Fx =
2J1(κxrd)

κxrdJ0(κxrd)
(14)

in terms of the Bessel functions Jm(ζ) and the parameters
κv = (1 − i)/δv and κt = (1 − i)/δt.

Elimination of U from Eq (12) yields

∂2p

∂z2
= ZYp = Γ

2p, (15)

where Γ =
√
ZY is the propagation parameter for waves

along the duct. Waves propagating in the ±z directions
have a z-dependence proportional to e±Γz. It follows that

U = ±Γ

Z
p = ±Y

Z
p = ± p

Z0

, (16)

where Z0 =
√

Z/Y is the characteristic impedance. By
analogy with microwave circuit theory,10 a duct of length
Ld can be replaced by a T-equivalent circuit. Figure 2
shows the equivalent circuit of the viscometer duct ter-
minated by the impedances associated with end effects
and chambers (as defined in the next section). The

• Zend Z1 • Z1 Zend

ZV
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·

ZV

·
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p1 pc p2

FIG. 2: Simplified equivalent circuit of the Greenspan vis-
cometer.

impedances used to represent the duct are

Z1 = Z0 tanh(ΓLd/2)

=
iωρLd

2Ad(1 − Fv)

tanh( 1
2
ΓLd)

1
2
ΓLd

(17)

Z2 =
Z0

sinh(ΓLd)

=
ρc2

iωAdLd[1 + (γ − 1)Ft]

ΓLd

sinh(ΓLd)
. (18)

In each case, the second form involves the ratio of a hy-
perbolic function to its argument, ratios which approach
unity at zero frequency.

B. Lumped-component model

Lumped component acoustic models have been used
for analyzing experimental results.2–5 The use of such
models is supported by numerical calculations,11 which
show that the pressure field within each chamber is spa-
tially uniform except for entrance effects at the duct ends.
The entrance effects are confined to a region whose di-
mensions are of order rd. The effects of the chambers can
be represented as a volume impedance in series with an
end-effects term. Within the chambers the gas compress-
ibility is isothermal at the walls and adiabatic far from
the walls. An expression for the chamber impedance ob-
tained by calculating the average compressibility within
the chamber is

ZV =
ρc2

iω[Vc + 1
2
(1 − i)(γ − 1)Scδt]

=
ρc2

iωVc
, (19)
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where a complex volume Vc has been introduced in the
second form for brevity. The ratio Scδt/Vc is the ap-
proximate fraction of the chamber’s volume in which the
compressibility differs from the adiabatic value and where
dissipation occurs.

The localized impedance at the duct ends can be writ-
ten

Zend =
ρω

Ad
(iδI + δR), (20)

where δI and δR are lengths which have been evaluated
numerically.11 To first order in δv the lengths are

δI = δi + εiδv, δR = εrδv . (21)

As noted previously, for the experimental resonator, δi ≈
0.655 ·rd; δI differs from this by a viscous boundary layer
correction term and hence provides a more accurate rep-
resentation of inertial end effects. When the duct ends
are square, the techniques of Ref 11 predict a resistive pa-
rameter εr0 ≈ 0.987. The boundary-layer approximation
used in deriving this number breaks down when the tan-
gential velocity varies rapidly on a length scale of order
δv, as it does at the sharp corners of the duct ends where
the acoustic velocity field is weakly divergent. Cutting
off the singular integrals a distance of order δv from the
sharp corners yields a fractional decrease in εr of order
(δv/rd)

1/3. Recent numerical calculations12 of the acous-
tic and vorticity fields near the duct end show that εr

is slightly less than the constant term and varies weakly
with δv/rd according to

εr ≈ εr0 − 0.348(δv/rd)
1/3 + 1.15(δv/rd). (22)

The constant term in this expression is sensitive to the
shape of the duct ends. Rounding the sharp edges de-
creases εr, and a slight burr can increase it. Improved
agreement with experimental measurements in helium,
for which the viscosity is known from first principles, was
obtained by adjusting εr0 to 1.024, a 3.7% increase. With
this value of εr0, for the range 0.008 < δv/rd < 0.045
that corresponds to recent experimental data, Eq (22)
predicts values of εr varying from 0.96 to 0.95. Exper-
imental evidence in support of the weak dependence on
δv/rd is included in Appendix A. In future work, we rec-
ommend rounding the corners of the duct ends to reduce
the sensitivity of εr to δv/rd.

The argument in Ref 11 that εi ≈ εr failed to take into
account the directionality of the linear momentum, an ef-
fect that lowers the portion of εi associated with diverging
flow outside the duct end by a small amount. The value
εi ≈ 0.86 obtained in recent numerical work12 is slightly
smaller than εr0. Improved experimental agreement was
obtained with a modest increase to εi ≈ 0.96.

As noted above, early viscometers used a fill capillary
connected to one of the chambers, and the most recent
version has a fill capillary attached to the main duct near
its center. It is convenient to first consider a resonator
without a fill capillary, as shown in Fig 2. Equation (18)

shows that Z2 is proportional to the inverse duct volume,
so it is much larger than ZV , which is proportional to
the inverse chamber volume. Accordingly, forced acous-
tic flow will be mainly between the chambers with small
perturbations due to the Z2 term.

The Greenspan viscometer has a low-frequency mode
of odd symmetry which is completely independent of Z2.
For this mode, the acoustic pressures in Fig 2 satisfy
p2 = −p1 and pc = 0. This will occur if the sum of the
impedances in either leg of the “T” vanishes

Z1 + Zend + ZV = 0. (23)

This simplifies to

ω2

c2
=

2Ad(1 − Fv)/Vc

Ld tanh( 1
2
ΓLd)/( 1

2
ΓLd) + 2(δI − iδR)(1 − Fv)

.

(24)
In the absence of dissipative terms this agrees exactly
with Eq (1), except for the hyperbolic-tangent term in
the denominator. The magnitude of this term can be
estimated by using Γ ≈ iω/c ≈ ik0, so that (ΓLd)

2 ≈
−2AdLd/Vc, and

tanh( 1
2
ΓLd)

( 1
2
ΓLd)

≈ 1 +
2AdLd

3Vc
. (25)

This differs from unity by 2/3 of the ratio of the duct
volume to a chamber volume, or 1.2% for the experimen-
tal resonator. Terms like this are not negligible in the
full model, but can be neglected in Eq (24) for present
purposes. For small dissipation, neglecting terms of sec-
ond order in δv and δt, approximating Fv by (1−i)δv/rd,
and writing ω2 ≈ ω2

1(1 + i/Q) where ω1 is real, Eq (24)
simplifies further to

ω2
1

c2

(

1 +
i

Q

)

(26)

≈ k2
0

(

1 +
i

Qv
+

i − 1

Qt
− Ld + 2εird

Ld + 2δi

δv

rd

)

.

The imaginary part of this equation is identical with the
boundary-layer contributions to 1/Q in Eq (7); the real
parts give an improved estimate of the resonance fre-
quency.

When there is an acoustic source with volume velocity
U0 in chamber 1, the steady-state pressure in chamber 2
calculated from the equivalent circuit is

p2 =
Z

2
V Z2U0

(Z1 + Zend + ZV )(Z1 + Zend + ZV + 2Z2)
, (27)

which has the expected resonance term in the denomina-
tor. (The second factor in the denominator vanishes for
the lowest plane-wave mode in the duct, with kLd ≈ π.)

C. Input impedance of fill capillary

The fill capillary is treated as a circular duct termi-
nated by an impedance Zt (Fig 3). It has an input
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impedance

Zin,fd = Zef1 + Zf1 +
Zf2(Zf1 + Zef2)

Zf2 + Zef2 + Zf1

(28)

when the termination is open (Zt ≈ 0) and

Zin,fd = Zef1 + Zf1 + Zf2 (29)

when the termination is closed. In these expressions the
impedances Zf1 and Zf2 are defined by Eqs (17) and
(18) with parameters appropriate for the fill capillary,
i.e. Γ → Γf , Ld → Lf , and appropriate end corrections
in Eq (20) are used for Zef1 and Zef2.

• Zef1 Zf1 • Zf1 Zef2

Zf2

·

Zt

·

FIG. 3: Equivalent circuit of a fill capillary, treated as a cir-
cular duct terminated by an impedance Zt.

D. Fill capillary in chamber

Early versions of the viscometer5 had a fill capillary
in the source chamber. In this section, we derive the
equation used for analyzing data taken with those vis-
cometers, and show that it is difficult to minimize the
effects of the fill capillary on the performance of the vis-
cometer. These considerations led to relocating the fill
capillary to the center of the duct.

The equivalent circuit of a resonator with a fill capil-
lary in the source chamber can be obtained from Fig 2
by the introduction of Zin,fd in parallel with the left ZV .
This parallel combination has an impedance

Z
′
V = ZV /(1 + ZV /Zin,fd). (30)

The equivalent circuit is no longer symmetric so the
resonance condition is more complicated. With Z

′
1 =

Z1 + Zend, the resonance condition is

Z
′
V + Z

′
1 +

Z2(Z
′
1 + ZV )

Z2 + Z′
1 + ZV

= 0, (31)

which can be combined with Eq (30) and rearranged to
get

ZV + Z
′
1

ZV

[

1 +
Z2

Z2 + Z
′
1 + ZV

]

=
ZV

ZV + Zin,fd

. (32)

This form makes it easy to estimate the effects of the fill
capillary. When the fill-duct impedance is infinite, the
right side vanishes and the previous resonance condition
ZV + Z

′
1 = 0 is satisfied. When the right side is small

but finite, the square brackets on the left side will have
a magnitude near 2 because of the large magnitude of
Z2. The first term on the left side equals the negative
fractional perturbation in ω2, which accordingly is

−∆ω2

ω2
≈

1
2
ZV

ZV + Zin,fd

. (33)

In order to minimize the perturbation, the input
impedance of the fill capillary must have a magnitude
much larger than that of the chamber impedance. While
it is possible to achieve this for short, capped ducts, the
ducts required for filling and evacuating practical vis-
cometers often have a length that is a significant fraction
of a wavelength at the working viscometer frequency. In
this case it is difficult to make the right side of Eq (33)
negligible under a wide class of operating conditions (dif-
ferent gases, temperatures, pressures). These considera-
tions led Wilhelm et al2 to introduce a centered fill cap-
illary.

The steady-state resonator response in Eq (27), modi-
fied to account for the fill capillary, is

p2 =
ZV Z

′
V Z2U0

(Z′
1 + Z

′
V )(Z2 + Z

′
1 + ZV ) + Z2(Z′

1 + ZV )
. (34)

This equation was used for analyzing data taken with the
earlier versions of the viscometer.

E. Centered fill capillary

The current version of the viscometer has a fill capil-
lary attached at the center of the main duct. The acous-
tic pressure has a node at this point for a symmetric
resonator. This will minimize the coupling to the fill
capillary, even for resonators with small asymmetries.

The modified viscometer is represented by the equiv-
alent circuit in Fig 4. Each half of the original duct is
now represented by a T-section. The impedance of the
capillary duct, including end effects, is represented by
Zc. The impedance Z

′
a is the sum of the series term for

a duct of length Ld/2 and the the end impedance at the
chamber

Z
′
a = Z0 tanh(ΓLd/4) + Zend. (35)

Similarly, the term

Z
′′
a = Z0 tanh(ΓLd/4) + Z

′
end (36)

includes a different end impedance, as appropriate for a
junction of the fill capillary with the main duct. The
other term in the T-sections is

Zb =
Z0

sinh(ΓLd/2)
. (37)

The circuit will have a low-frequency mode with pc = 0
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FIG. 4: Modified equivalent circuit with centered fill capillary
represented by impedance Zc.

and p1 = −p2 if

ZV + Z
′
a +

ZbZ
′′
a

Zb + Z′′
a

= 0. (38)

After some manipulation this reduces to

Z1 + Zend + ZV (39)

+
Z
′
end

[cosh(ΓLd/2) + Z
′
end/Zb] cosh(ΓLd/2)

= 0,

which is identical to Eq (23) when the impedance Z
′
end =

0. This impedance has not been calculated; however it is
proportional to a length on the order of the radius of the
fill capillary, and thus should be negligible. It is kept in
the following equations for completeness, but was set to
zero when analyzing the data presented in this paper.

The output pressure p2, obtained by solving the system
of linear equations represented by Fig 4, is

p2 = U0

Z
2
bZcZ

2
V

D1D2

, (40)

where

D1 = (Zb + Z
′′
a)(ZV + Z

′
a) + ZbZ

′′
a ,

D2 = ZbZV + 2Zc(Zb + ZV )

+Z
′
a(Zb + 2Zc) + Z

′′
a(Zb + ZV + Z

′
a).

Note that the vanishing of the denominator factor D1

is equivalent to the resonance expression (38). Equa-
tion (40) is the theoretical resonance response function
used in data analysis.

III. TESTS OF THE THEORY

The theory presented above was tested with data ac-
quired using the resonator sketched in Fig 1. Measure-
ments were taken on five well-studied gases: helium,
argon, nitrogen, propane, and sulfur-hexafluoride. For
these gases, the speed of sound, the thermal conductiv-
ity, and the viscosity are well known from independent
measurements and, in the case of helium, even better
known from theory.13 The values of the resonator’s phys-
ical dimensions used in the analysis of the data were de-
termined by dimensional measurements and were not ad-
justed. The values of εi and εr were adjusted slightly to
improve the quality of the fit to the helium data.

The test data were acquired over an interval of three
weeks and span the pressure range 0.2 MPa to 3.2 MPa
(For propane, the maximum pressure was 0.75 MPa, to
avoid condensation.) At each value of the temperature
and the pressure, the complex response function of the
resonator was measured at 22 uniformly spaced frequen-
cies spanning the range ±f/Q about center frequency
f of the Greenspan mode. To do this, the frequency
was set by a synthesizer and lock-in amplifiers were used
to measure the complex voltage at the drive and detec-
tor transducers. We computed the complex ratio (de-
tected voltage)/(drive voltage) at each frequency and fit-
ted Eq (40) to the results. The main fitting parameters
were Dv and the speed of sound c. The other fit parame-
ters were a complex constant describing the proportion-
ality of the complex voltage ratio to the acoustic pressure
p2 and a complex constant representing background cou-
pling between the transducers. In some cases, a sloping
background term was justified; this added an additional
complex constant. The fits required values of the thermal
diffusivity Dt and the specific heat ratio γ. For argon, ni-
trogen, propane and sulfur-hexafluoride, these quantities
(as well as reference values of the speed of sound) were ob-
tained from the database REFPROP14; for helium they
were obtained from Refs 13, 15, and 16. Typically, the
standard deviation of the voltage ratio from the fit was
0.02% of the maximum voltage. If the apparatus were
fully understood, a fit of this quality could determine the
viscosity with an uncertainty of 0.04%.
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FIG. 5: Percentage differences between experimental viscosi-
ties and reference values for five gases, as functions of pres-
sure.

In Fig 5, the resulting values of η(p, T ) are compared
with reference values. For this critical comparison, we
rescaled the values of η(p, T ) from the database REF-
PROP by the values of η0 reported by Vogel and his
collaborators. (Here, η0 is the viscosity in the limit of
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zero pressure at 298.15 K) In units of µPa·s, the values
of η0 are: nitrogen,17 17.782; argon,17 22.599; propane,18

8.155; sulfur hexafluoride,19 15.234. The reliability of
the values of η0 determined by Vogel et al. is confirmed
by the agreement of their ratios with the ratios mea-
sured by Berg20 (0.06% mean fractional difference) and
by the small difference (0.13%) between their value of η0

for helium (19.860)17 and that calculated by Hurly and
Moldover.13

The viscometer was tested over a wide frequency range.
The resonance frequencies were 920 ± 30 Hz for helium,
326± 4 Hz for nitrogen, 295± 5 Hz for argon, 223± 7 Hz
for propane, and 115± 6 Hz for sulfur-hexafluoride.

The argon viscosities differ from reference values by
0.4% at higher pressures. Both the helium and argon vis-
cosities tend towards lower values at low pressures where
sloping backgrounds were needed to get acceptable fits
to the resonance profiles. Fits with constant background
have the opposite trend at low pressures, tending towards
higher viscosities. The viscosity of nitrogen is 0.2% below
the reference values at high pressure and closer to the ref-
erence values at low pressure. The viscosities of propane
and sulfur-hexafluoride are close to reference values at
low pressure but differ significantly at higher pressures
In these instances, we believe that the present results are
more accurate than the reference data.

The properties of propane are representative of the
polyatomic gases used in semiconductor processing. The
sensitivity of the propane viscosity to the values of Dt

needed for analyzing the data was tested by altering the
input value of thermal conductivity by ±10%; the corre-
sponding changes in viscosity were ∓1%.

Figure 6 displays the deviations of the speeds of sound
resulting from fitting the Greenspan viscometer data
from reference values. The reference values were ob-
tained from Ref 13 for helium, Ref 14 for argon and
nitrogen, Ref 21 for propane, and Ref 22 for sulfur-
hexafluoride. The results for helium, argon, and nitro-
gen within +0.01% to -0.03% of the reference values, and
have similar, approximately linear dependences on pres-
sure. This is surprisingly good for a resonator that was
not designed to measure the speed of sound in gases. The
poorer agreement of the propane and sulfur-hexafluoride
results is consistent with the increasing uncertainty of
the reference values as condensation is approached.

APPENDIX A: FITS TO DETERMINE εr

The resistive end parameter εr was determined exper-
imentally through fits to helium and argon data. For
these fits, the viscous diffusivity was assumed known and
εr was a free parameter. Figure 7 shows that the results
have a weak, decreasing dependence on δv/rd that is con-
sistent with Eq (22). The coefficient εr0 = 1.024 chosen
to fit the helium results was used for reduction of the
data presented earlier in this paper.
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APPENDIX B: SYMBOLS

u = acoustic velocity field

ρ = mass density

p = acoustic pressure

c = speed of sound

cp (cv) = heat capacity per unit mass at

constant pressure (volume)

γ = cp/cv
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Ad = πr2
d = cross-sectional area of duct

Dv = η/ρ = viscous diffusivity

Dt = thermal diffusivity

δv =
√

2Dv/ω = viscous penetration length

δt =
√

2Dv/ω = thermal penetration length

κv = (1 − i)/δv

κt = (1 − i)/δt

Fv =
2J1(κvrd)

κvrdJ0(κvrd)

Ft =
2J1(κtrd)

κtrdJ0(κtrd)

Z =
iωρ

Ad

1

1 − Fv

Y =
iωAd

ρc2
[1 + (γ − 1)Ft]

Z0 =
√

Z/Y
Γ =

√
ZY

All “small” acoustic quantities have an implicit time de-
pendence proportional to eiωt.
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17 E. Vogel, “Präzisionsmessungen des Viskositätskoef-
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